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Free-surface and internal stationary waves in a meandering stream are treated, and 
analytical solutions given. It is shown that for each category there is an infinite 
number of Froude numbers, depending on the wavenumber of the meander, at which 
resonance occurs, and the amplitude of one of the wave components becomes infi- 
nite, according to the linear theory. These critical Froude numbers are interpreted 
physically. Furthermore, variable depth is treated for the case of free-surface waves, 
and in this treatment it is shown, incidentally, how the eigenvalues of a singular 
differential equation can be found under the requirement that the eigenfunction be 
non-singular. 

Finally, an attempt is made to explain the self-induced, non-stationary waves in 
water flowing between corrugated vertical walls, found by Binnie (1960), by an 
instability mechanism proposed by Yih (1976). There is strong evidence that this 
mechanism is at work, a t  least when a sloshing mode is involved in the wave-triad 
interaction. 

1. Introduction 
When there is need to transport water in open channels from one location to 

another in a mountainous region, these channels often wind their way more or less 
along the contour lines of the terrain, and i t  has been observed that a t  a certain speed 
of flow waves of large amplitude form, endangering the unpaved part of the sidewalls. 
I n  another practice of hydraulic engineering, water is allowed to shoot at high speed 
down spillways on the side of a dam. At the entrance of the spillway there is 
necessarily a contraction, creating violent waves of a diamond pattern, which are 
obviously undesirable. Hence waves in meandering streams or in channels of variable 
width are of practical importance. Yet, while the general topic of waves has of late 
received much attention from research workers, especially that part of i t  which has 
to do so with solitons and the inverse-scattering theory, waves in meandering or 
bulging and contracting streams have seldom been treated. One possible reason for 
this is perhaps that the problem is not very tractable a t  first sight. 

One of the few papers on the aforementioned problem extant in the literature 
is that  of Binnie (1960), who observed self-induced waves in a conduit with corrugated 
walls, with longitudinal wavelengths which are an integral multiple of the wavelength 
of the wall corrugation, and with transverse wavenumbers as well. Binnie gave a brief 
analysis of slanted waves in otherwise quiet water in a rectangular channel with 
straight sidewalls, which serves to organize his experimental results. His analysis 
confirmed the existence of the waves propagating upstream, which he observed. But 
it did not explain how these waves arose. It will be shown a t  the end of this paper 
that  these progressive waves are induced by an instability mechanism proposed by 
Yih (1976), originally for the instability of gravity waves in water flowing over a wavy 
bottom, but adaptable to apply to the stationary waves treated here. 

In  this paper stationary waves in a meandering stream will be analysed and a 
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complete solution given. The waviness of the sidewalls and its consequences will be 
fully taken into account, and the solution will give the amplitudes of the various 
components of the slant waves produced by the flow through the wavy channel a t  
any given value of the Froude number, and in particular will give the transverse 
wavenumber of the dominant wave a t  that Froude number, As the Froude number 
approaches any of an infinite number of critical values resonance occurs, and the 
amplitude of one of the infinite number of wave components approaches infinity. This 
result will be given a physical interpretation. 

I n  addition, surface waves created by water flowing in a meandering stream of 
variable depth, as well as internal waves in a meandering channel with vertical 
sidewalls, are treated in turn, and similar results are obtained. The results on waves 
in symmetric channels of variable depth can be treated in the same way (Yih 1982). 

2. Formulation of the problem 

velocity components therefore possess a potential 9 : 
We neglect the effects of viscosity and assume the flow to be irrotational. The 

(u, v, w )  = (9u 9p 9A (1) 
where the subscripts denote partial differentiation, x, y, and z are Cartesian 
coordinates, and u, v,  and w are measured in the directions of increasing x, y, and 
z respectively. The fluid being assumed incompressible, the equation of continuity 
is 

ux+vy+w, = 0, 

which, by virtue of ( l ) ,  gives the Laplace equation 

A z x  + 9,, + 9 z z  = 0, (2) 

which is the differential equation governing the flow. The coordinate z is measured 
vertically upward from the free surface when there is no flow, and x and y are 
measured down and across the channel respectively. 

Let the displacement of the free surface above its mean position (which is the 
position it would have if there were no flow) be denoted by <, which is a function 
of 5 and y only, since the flow under consideration here is steady. Then the kinematic 

(3) 
condition for the free surface is 

and the dynamic condition there is the Bernoulli equation 

4 z + v c v  = w, 

u2 + v2 + w2 + 295 = constant. 

Combining (3) and (4), we have 

(4) 

Let h be the depth of water in the meandering channel when there is no flow, L 
be the half-width of the. channel a t  some cross-section, and U be the mean velocity 
at that cross-section. We shall use L as the lengthscale and U as the velocity scale, 
and define the following dimensionless variables : 
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(7)  

which we repeat here because it is dimensionless and will be understood to  be so when 
we later refer to (7). Equation ( 5 ) ,  after (1) and (6) are used and the carets in (6) are 
dropped, now has the dimensionless form 

Then, after the carets are dropped, (2) retains its form : 

#zz + $yy + $22 = 0, 

The boundary condition a t  the bottom of the channel is 

$hz = 0 (2 = - d ) ,  (9) 

$n = 0, (10) 

and the condition at the vertical walls is 

where n is measured in a direction normal to the vertical walls bounding the stream. 
Equations (7)-( 10) constitute the differential system governing the problem. 

3. A transformation for the meandering 

represented by the conformal mapping 
So far we have not taken into account the meander of the stream. This will be 

or 
x+ iy = a+ iP+ ia cos k(a  + ip), 

x = a +a sin k a  sinh k/3, 

y = ,!?+ a cos ka cosh k,!?, 

where a is an amplitude, and k is a wavenumber of the meander. From (11) we obtain 
the Jacobian 

J=A- a(x ’) - 1 f2akcoskasinh k/3+a2k2(sinh2k/3+sin2ka). 
a(a> P)  

The transformation (11) gives the meander of the stream: the boundaries of the 
stream given by /3 = f 1 are sinuous. Of course other representations are possible, 
but (1 l ) ,  being conformal, makes subsequent calculations much simpler, and, among 
the conformal mappings that can possibly represent the meander, it  is the simplest. 

In  terms of a and /3 (instead of x and y),  (7) and (8) become 

1 
J(L + $pp) + $zz = 03 (13) 

Equation (9) remains unchanged, but (10) now has the form 

$ @ =  0 (p= f l ) .  (15) 

The governing system now consists of (13), (14), (9) and (15). 
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4. Solution of the problem 

of the waves produced by i t ,  we expand q5 in a power series in a :  
Recalling that a in (1 1 )  is the amplitude of the meander and therefore the amplitude 

It is evident that 
$ = q50+aq51+a2q52+... . 

$0 = a, 

which says in effect that in the absence of meander the flow is just unidirectional and 
uniform flow in a straight channel. Substituting (16) and (17) into (13) and (14), and 
carefully sorting out the terms of first order in a ,  we obtain 

q5lora + $*pa+ q 5 l Z Z  = 0, 

+ FP2q5,, = - k2 sin ka sinh kp. 

The solution for $1 satisfying (9) and (15) as well as (18) and (19) is, since sinh kp is 
odd in p, m 

q51 = C BnsinkasinIf(2n-1)~/?coshy,(~+d), (20 ) 

(21) 

n-i 
where 

and B, is given by 

7, = [ k 2 + i ( 2 n -  1 ) 2 ~ 2 ] f ,  

9 (22)  
( -  1)”2k3 C O S ~  k 1 

B, C, = - k2jVl sinh kpsin i(2n- 1 )  z p d p  = 
Y; 

where C, = - k2 cosh yn d + FP2y,  sinh yn d. 

To order a, then, the dimensionless g is obtained from (4) (which is in dimensional 
form) as 00 

y =  -ak-lcoska C Bny,sinhy,dsin+(2n-1)nP. (24 ) 
n-1 

In obtaining (24), we have made u!e of the result 

as well as (22), which gives the Fourier coefficients for sinhkp. The free-surface 
displacement given by (24) is shown for one half-wavelength of the meander in figure 
1.  A perspective view of the free surface is shown in figure 2. 

Equations (16), (20), and (23) give the results of the linear theory. Before going 
on to discuss the next approximation, which takes terms O(a2) into account, we shall 
discuss the outstanding features of the results of the linear theory and interpret them 
in physical terms. First, we see from (22) and (23) that B,+m when C,-tO. But ~. 

for C,  = 0 

or 

In  (25), k/yn is the cosine of the angle between the direction of increasing a and the 
direction normal to the wave fronts of the slanted waves with wavenumber y,d (which 
is the wavenumber non-dimensionalized with the length h instead of the length L ) ,  
and the right-hand side is the wave speed of waves with the wavenumber ynd. Thus 
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FIGURE 1. Graphs showing the free surface, at F = 1. k = 0.4, d = 0.2. The scale of 5 is $I times 
that of y. The dotted lines are constant-a lines on the undisturbed free surface, for lOka/n = 0, 
1, 2,  3, 4, 5. On the highest one (4a/n = 5), 5 = 0. The dimensionless [ / a  is plotted above or below 
the dotted lines. The maximum [ / a  is 0.217, a t  a = 0 and /3 = 1. The figure can be extended to 
4a/n = 10 by antisymmetry, and then the whole figure can be reflected across the plane a = 0 to 
get the free surface for a whole wavelength. 

\ 
\ 

FIGURE 2. Free surface in perspective for half a wavelength, for P = 0.8, k = 0.75, d = 0.23. 
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the nth critical value of U is such that in the (a,P)-plane its component normal to 
the fronts of the waves of the wavenumber ynd  is precisely the wave speed of those 
waves. When U has such a value, there is resonance, and the amplitude of the yn 
waves (with wavenumber yn or y n d ,  depending on the lengthscale used to non- 
dimensionalize the wavenumber), becomes infinite according to  the linear theory. 
This is reminiscent of the resonance arising from a layer of water flowing over a wavy 
surface when its speed is equal to the speed of gravity waves with the wavenumber 
equal to that of the wavy bottom, but now there are an infinite number of critical 
values for U ,  and the resonance is recognizable in a somewhat more subtle way. 

Higher approximations can be carried out by including the nonlinear terms in (12), 
(13) and ( la) ,  starting with terms O(a2) .  We shall not present the rather lengthy 
calculations, but shall note here that, in the calculation for & new wavenumbers for 
the a-direction will be obtained. These are zero and 2k .  Calculations to account for 
terms with these wavenumbers are entirely similar to  what has been presented in this 
section, the only difference being that the equation for &, corresponding to (18), will 
now contain non-homogeneous terms, and the equation for $ 2  corresponding to (19) 
will contain terms with wavenumbers zero and 2k for the a-direction. No new critical 
values for F (or U )  will be created by terms of zero wavenumber for the a-direction, 
but the terms with wavenumber 2k (for the a-direction) will give rise to new critical 
values for F ,  corresponding to new resonances, which can be interpreted in much the 
same way as the resonances presented in detail for the basic wavenumber k in this 
section. 

5. Meandering channels of variable depth 
Since natural streams have variable depth and are often shallow in the sense that 

they are much wider than they are deep, we shall treat the case of variable depth 
with the shallow-water theory, for simplicity. Let a, /3, L and F retain the same 
meanings as before. The h in d = h/L  is now variable. Let 

d = 1-P2. ( 2 6 )  

The surface displacement c, measured in units of L as before, is again a function of 
a and /3. The total (dimensionless) depth is 

D = d+g.  (27) 
Then, using dimensionless 4, x, and y, the equation of continuity, according to the 
shallow-watcr theory, which will be used here, is 

and the dimensionless Bernoulli equation written for the free surface is 

& + q5; + 2FP2[ = constant, (29) 
where the term 9," is neglected, in consistency with the shallow-water theory. I n  terms 
of a and /3, (28) and (29) are 

W p ) p  + d$,, + @a ca = 0, (30) 
1 
- (q5: + @) + 2F-2c = constant. 
J 
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Using (12), (16) and (17) ,  we obtain from (31) 

Q = -aF2$,,,-ak2F2sinkasinh k/3+O(a2). (32) 

Substituting (16), (17),  (26) and (32) into (30), extracting terms of first order in a ,  

(33) 
and writing 

[ ( l  - P 2 ) ) f ] ’ + [ k 2 F 2 - k 2 ( 1 - P 2 ) ] f =  F2k2sinh kP, (34) 
we have 

where primes indicate differentiation with respect to P. Since k is based on the 
horizontal lengthscale L,  i t  does not have to be small for the shallow-water theory to 
apply. However, in most applications (to rivers especially) k is fairly small compared 
with 1 .  

We shall now consider the non-singular solutions (which will serve as the eigen- 
functions) of the equation 

$1 = sin kaf(P,, 

[( 1 -P2)  G]’+ [ A  - k2( 1 -/?‘)I G = 0 ,  (35) 

which is singular a t  P2 = 1 .  Let 

A = p0+ k2pl + k4p2 + .. . , 
G = go+ k2g,+ k4g2+. .. . 

Then it is clear that 
PO = n ( n + l ) ,  9 0  = pn(P), (37) 

where n is an integer and P, is the nth Legendre polynomial. To find ,ul and gl, we 
obtain from (35) and (36), upon collecting terms of order k2, 

Lg, = [(1-P2)g;l’+n(n+l)91 = (1-P2)90-P19o. (38) 

If g1 is to be non-singular a t  p2 = 1 ,  the right-hand side of (38) must be orthogonal 
to go. This can be seen by multiplying (38) by go and integrating between - 1 and 
1 with respect to P :  

J~190L91dP = J ~ 1 9 1 ~ 9 0 d P  = 0 = J:l (1-v1-P2)9W. (39) 

This determines,ul, and g1 is then found from (38). I n  practice, we use the well-known 
identities involving Legendre polynomials, such as those on p. 115 of Jahnke & Emde 
(1945), and find that 

so that 

(41) 
2n2+2n-1 

(2n+3) (2n-1). 
/Al = 1- 

We shall now, for clarity, denote the eigenvalue A and the eigenfunction G for any 
particular n by A,  and G,, which is the nth (non-singular) eigenfunction of (35). Then, 
realizing that the right-hand side of (34) is odd in t3, we write 
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Substituting this into (34), multiplying the result by GZp-,, and integrating, we have, 
writing n for 2p- 1,  

B, (k2FZ-A, )~~ ,  G2,dP = F2k2~~ , s inhk /3C,d~ ,  (43) 

which determines B, (for n = 2p- 1 ) .  Equations (43), (36), (37), and (40)-(42) then 
give thef(P) in (33), and 

gives the solution for a linear theory, which is all one can attempt in the shallow-water 
theory. In the foregoing we have determined g, only to O(k2). It can be determined 
up to any power of k2 with a little patience. For k = +, it is unnecessary to go beyond 
what has been done here. For k = 4, the error committed in stopping at  terms O(k2) 
in gn is at most 6%. 

Fork = +, the integrals in (43), without their coefficients, have been evaluated. If the 
first integral is denoted by I, and the second integral by I,, then, for p = 1,2,3 
respectively, 

q5 = a+aq5, 

I, = 0.6551, 0.2870, 0.1917; 

I, = 0.1662, 0.0005525, 0.003846. 

I, = 0.6208, 0.2955, 0.1993; 

I ,  = 0.3298, 0.0009392, 0.03908; 

For k = 8, 

again for p = 1,  2, 3 respectively. 
The B, determined by (43) is infinite for k2F2 equal to any of the infinitely many 

eigenvalues A,. There is therefore again resonance at these critical values for k2F2, 
and the physical interpretation for these critical values is analogous to that given 
in the case of vertical sidewalls in $4, but the mathematical arguments supporting 
this physical interpretation are now not so transparent, though their vestiges are still 
evident. 

6. Internal waves in a meandering stream 
If a stream is laden with sediment, or when water with stratified salinity flows 

during high tide backward from the sea, internal waves will be created if the stream 
meanders. These waves generally have a larger amplitude than surface waves and, 
in the case of the sediment-laden stream, may give rise to turbidity spots where the 
crests of the internal waves come near the free surface (where water is in contact with 
air). 

For simplicity we shall only give the solution for the case of two layers of liquid 
of equal and constant depth h. The case of unequal constant depths can be treated 
similarly, with somewhat more complicated results but no additional difficulty 
whatever. 

Let p be the density of the lower fluid and p' the density of the upper fluid, and 
let the corresponding velocity potentials be denoted by 9 and 9' respectively. These 
both satisfy the Laplace equations. 

The displacement of the interface of the two fluids will be denoted by 5. Then (3) 
holds for the lower fluid, and a similar one holds for the upper fluid: 

U'Q + ?I1& = W I ,  (44) 

where the primes indicate the upper fluid. We shall describe these in dimensional 
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terms until a later time. Denoting the pressure by p ,  the Bernoulli equations for the 
two fluids are 

iPPQ2+PSS+P = c, 

where 

ip’q’2+pfgY+p = c‘, 
&(pq2-p’q’2)+Apg[  = C-C‘, 

q2 = u2+v2+w2 = )grad4l2, 

I grad $’I2 ,  q’2 = uf2 + v’2 + = 

A p  = p-p‘ .  

Combining (3) with (45), we have the interfacial conditions 

The other boundary conditions are 

$a = 0 = 4; a t  the vertical sidewalls, (51) 

(bz = 0 ( z = - h ) ,  4; = 0 ( z =  h ) ,  ( 5 2 )  

where n again denotes the distance along the normal to the sidewalls. The last 
condition in ( 5 2 )  is obtained by treating the free surface as if it were rigid, as one 
can do if A p  is small compared with p or p’. 

We now use the dimensionless variables defined by (6) and similar ones for the upper 
fluid, removing the carets afterwards, and consider a meander described by (1  1). The 
differential equation satisfied by 4, in dimensionless terms, remains (13), and the 
corresponding one for 4‘ is 

The dimensionless forms for (49) and (50) are 

where 

and Fi is the interfacial Froude number defined by 

Assuming 

substituting these into (13) and (53)-(55), and sorting out the terms of order a, we 
have 

A a a  + 41&3 + 41zz = 0, (58) 
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k2 sin ka sinh k/3 ( z  = 0), 
1 

W 1 a u  - P ’ L )  + K 2  + l Z  = - ~ 

P+P‘ P+P’ 

AP 
P+P‘ P+P 

(p$laa - p’$$,) + Fc2 q5iz = - - k2 sin ka sinh k/3 ( z  = 0). 
1 

Equations (60) and (61) immediately give 

+lZ = 4 L  
which can be used to replace (61). 

The boundary conditions are now 

c $ / ? = O = $ h i  ( b = f l ) ,  

q5,=0 ( z = - d ) ,  & = O  

These boundary conditions are satisfied by 

00 

q51 = C Bnsinkasin+(2n-l)~/3coshy,(z+d), 

4; = C Bk sin kol sin a( 2% - 1 )  q3 cosh y,(z - d ) ,  

n-1 

00 

n-1 

where y n  is still given by (21). 
Now it is evident that  condition (62) is satisfied by 

B k = - B  n >  

and i t  remains only to determine the B, in (60), which now has the form 

k2 sin ka sinh kp. 
P+P’ 

#laa +F? A z  = - 

Comparing (68) with (191, we see that the present B ,  is equal to Ap(p+p’)-l times 
the B, given by (22), if the F in (23)  is replaced by Fi. The surface displacement 5 
is given by (45) in dimensional terms. For the linear theory we can assume 

C- C‘ = +Ap U2. 

The critical Fronde numbers are given by 

Y 
k2 

4 = A t a n h  y n d ,  

and this can be interpreted physically as in $4. The discussion for higher approxi- 
mations is also similar to  that for the surface waves treated in $4. 

Finally, we note that the theory presented in the foregoing sections is not merely 
for supercritical flows, and that when k is large waves of large amplitude can occur 
even a t  subcritical speeds. The figures given in this paper are for supercritical speeds, 
for the F would be larger than 1 if i t  were based on the mean depth, and the pattern 
agrees qualitatively with that obtained from the classical shallow-water theory a t  
supercritical speed and for vertical sidewalls. But this should not obscure the fact 
that the present theory is for all Froude numbers, however large or small. 

For supercritical flows in curved channels or channel contract,ions and expansions 
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(all of rectangular cross-sections), the method of characteristics under the assumption 
of shallow-water theory can be applied. See, for instance, the four excellent papers 
in an ASCE Symposium (Ippen et al. 1951). For corrugated vertical walls of small 
amplitude, the shallow-water approximation gives a partial differential equation of 
constant coefficients and of the hyperbolic type, solvable immediately by the method 
of separation of variables. For subcritical flows the problem is more interesting and 
the solutions are richer, as this work shows. 

7. Explanation for the self-induced waves observed by Binnie 
When one makes water flow between two vertical wavy walls, as Binnie (1960) did, 

stationary waves bound to the wall corrugation are necessarily created, as shown here 
in $ 5 2 4 .  These I have called Binnie waves (Yih 1982t). But Binnie also observed 
self-induced waves propagating upstream. These, and sloshing two-dimensional 
waves which I think must have also existed in his experiments, are also Binnie waves. 
It now remains to explain how these unsteady waves, which are either progressive 
or standing waves, are produced. 

Benjamin (1967), in an important paper dealing with the interesting Benjamin-Feir 
instability of dispersive waves (Benjamin & Feir 1967), said of Binnie’s progressive 
waves : ‘ I am strongly inclined to believe this is an instance of the type of instability 
under discussion.’ He did not, however, use Binnie’s data to support or disprove his 
claim. It turns out that  the mechanism I proposed (Yih 1976) for the instability of 
gravity waves created by a stream of water flowing over a wavy bottom can be 
applied to the stationary waves treated in $ 2 4 .  This seems quite natural. I shall now 
study some of Binnie’s statements and examine his data in some detail, to show that 
there is considerable evidence that my instability mechanism may be the cause for 
Binnie’s non-stationary (unsteady) waves. 

The wavenumbers yn defined by (21) are for a meandering channel. Those for a 
symmetric channel with wavy walls (or for half of one), which was what Binnie used, 
are given by (Yih 1982) 

yn = (k2+n2n2)f, n an integer. (69) 

(70) 

The wavy sides have the basic wavenumber k, and to O(a) the symmetric channel 
is described by 

If we allow a modulation for (70), and replace i t  by (with a corresponding equation 
for x) 

(71) 

y = p+acoskhsinhk/I, /3 = f l .  

y = /3 + a(cos kh sinh k/3+ cos +k, sinh ik/3+ e2 cos Qk sinhik/3+ . . .). 

Then there are stationary waves with wavenumbers 

(+k2 + n2@, (&k2+ n2z2)h, etc. 

Bk, i k ,  +k, etc. When n = 0, these are 

Allowing these, and letting i and j denote the unit vectors in the directions of 
increasing x and y respectively, we ask the critical question: is there a progressive 
wavetrain with wavenumbers. (The n below is not the n in (69).) 

(72) 
k 
- i f nnj, m 

m, n integers, 

t The B, given in that paper is twice as large is it should be. 
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and a frequency a (not Binnie’s notation), and a transverse oscillation (which is a 
standing wave) with the wavenumbers 

& nnj (73) 

and the Same frequency a Z If so, taking either the + or - sign in (72) and (73), and 
labelling the wavenumbers k, and k, and their frequencies g2 and a1 (=  a,) 
respectively, we have the satisfaction of the resonance conditions specified by Yih 
(1976), whose analysis can be extended to the two-dimensional wavenumber space 
under discussion here. These conditions are 

ffl-az = 0. (75) 

The conditions are the same as found by Phillips (1960,1961) for interaction of wave 
triads, but, in the case when one wavetrain is created by fluid flow over a wavy 
boundary, provide the conditions of instability of that wavetrain. 

Examining Binnie’s tables 1 and 2, one sees that wavenumbers (72) exist. Indeed 
the agreements between the calculated and observed wave velocity relative to the 
flowing water in these tables confirms the progressive waves as free (i.e. not bound 
to wall corrugations) waves progressing upstream, with m = 2,  3 and 4, and n = 0, 
1 and 2 in (72), in the cases observed by Binnie. Binnie did not observe standing waves 
with wavenumbers knnj, but it did occur to him to calculate the period of the 
sloshing modes. (Incidentally he assumed the water to be ‘deep’, which was true for 
most cases. When the exact formula for the transverse period is used, I find that 
the figures for the calculated transverse period are somewhat larger in the cases of 
the smaller water depths, but in general not affecting - and sometimes even 
improving - the agreement between the transverse period and the observed period 
in Binnie’s tables.) Assuming that such sloshing modes did exist,t there is general 
agreement between the periods Binnie observed for his progressive waves and the 
calculated periods for the sloshing modes with waves knnj. That is to say, (75) is 
satisfied - nearly if not precisely, and very consistently, for all cases in which n = 1 
or 2. 

For n = 0 the instability is more closely of the kind described by Yih (1976) 
for wavetrains with wavenumbers all in the longitudinal direction, and (74) is 
replaced by 

(76) 
k 
m 

k , - k ,  = -. 

k, is the wavenumber of waves progressing upstream that Binnie observed, and k, 
is a smaller wavenumber of waves travelling downstream (even relative to the flowing 
water). I have checked to see whether (75) and (76) are satisfied by the data Binnie 
furnished for the cases n = 0, and found that the satisfaction is not good, though the 
magnitudes of the quantities checked are not far off. But even Binnie’s observed 
and calculated values for wave velocity relative to water do not show good agreement 
for n = 0 in his table 1. Thus one must consider the cases of zero n not yet 
satisfactorily studied. For n = 1 and 2, I think there is strong but incomplete evidence 
that the instability mechanism proposed by me was at work in Binnie’s experiments. 

t Binnie did say ‘ . . .these measurements (of wavelengths) were difficult, particularly when large, 
because over an interval of minutes the amplitudes were unsteady, rising and dying away like beats 
and the lengths but not the periods are variable.’ Could the beats be caused by the standing waves 
of the sloshing modes 1 
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The smaller m is, the more cycles for the instability mechanism to work, and 
therefore the more manifest the waves observed by Binnie. This seems to  be in general 
true, except that  he never observed any case with m = 1 .  I have checked to see how 
large the water velocity has to be for (75) and (76) to be satisfied (i.e. for cases n = 0 )  
when m = 1 ,  and have found that the water velocity has to  be less than those used 
by Binnie. I venture to suggest that  travelling waves with n = 0 and with m = 1 in 
(76) are possible and can be observed under the right circumstances. 

Finally, I note that the mechanism of instability mentioned above does exist 
theoretically, even though it has been only incompletely demonstrated that i t  was 
indeed a t  work in Binnie’s experiments. 

This work has been supported by the Office of Naval Research. One referee’s query 
led to the addition of $7,  and I am grateful to him. This piece of work was inspired 
by the work of Binnie (1960). I should be much gratified if this work brings some 
pleasure to  an old friend. 
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